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Motivation

Most causal models assume a single mapping from the cause to effect (causal mechanism) in a func onal form,

which makes them inapplicable in cases of data with complex distribu ons (see the illustra on below).
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Figure: Example illustra ng the failure of ANM on the inference of a mixture of ANMs (a) the distribu on of data generated from

M1 : Y = X2 + ε and M2 : Y = X5 + ε, where X ∼ U(0, 1) (x-axis) and ε ∼ U(−0.1, 0.1) ; (b) Condi onal p(Y |X = 0.2); (c) Condi onal

p(Y |X = 0.6). It is obvious that when the data is generated from a mixture of ANMs, the consistency of condi onals is likely to be

violated which leads to the failure of ANM.

Objec ve

Causal inference: infer the causal direc on of data generated from a mixture of causal mechanisms;

Mechanism clustering: cluster the data such that each cluster corresponds to a causal mechanism.

ANMMixture Model (ANM-MM)

An ANM [2] Mixture Model is a set of causal models of the same causal direc on between two con nuous

random variables X and Y . All causal models share the same func on form given by the following ANM:

Y = f (X ; θ) + ε,

where X denotes the cause, Y denotes the effect, f is a nonlinear func on parameterized by θ and the noise

ε ⊥⊥ X . The differences between causal models in an ANM-MM stem only from different values of func on

parameter θ. In ANM-MM, θ is assumed to be drawn from a discrete distribu on on a finite setΘ = {θ1, · · · , θC},
i.e. θ ∼ pθ(θ) = ∑C

c=1 ac1θc
(·), where ac > 0, ∑C

c=1 ac = 1 and 1θc
(·) is the indicator func on of a single value θc.
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Figure: (a) The graphical representa on of ANM mixture model. (b) An example of the distribu on over θ.

Identifiability

Postulate 1. Independence of input and func on [3]

If X → Y , the distribu on of X and the func on f mapping X to Y are independent since they correspond to

independent mechanisms of nature.

Theorem 1. Let X → Y and they follow an ANM-MM. If there exists a backward ANM-MM,

X = g(Y ; ω) + ε̃,

where ω ∼ pω(ω) = ∑C̃
c̃=1 bc̃1ωc̃

(·), bc̃ > 0, ∑C̃
c̃=1 bc̃ = 1 and ε̃ ⊥⊥ Y , in the an causal direc on, then (pX , pε, f , pθ)

should fulfill C̃ ordinary differen al equa ons,

ξ′′′ − G(c̃)(X, Y )
H (c̃)(X, Y )

ξ′′ = G(c̃)(X, Y )V (c̃)(X, Y )
U (c̃)(X, Y )

− H (c̃)(X, Y ), c̃ = 1, 2, · · · , C̃, (1)

where ξ := log pX , G(c̃)(X, Y ), H (c̃)(X, Y ), U (c̃)(X, Y ) and V (c̃)(X, Y ) are given in the supplementary.

Model Estimation

Gaussian Process Par ally Observable Model (GPPOM)

As in standard GP-LVM, the log-likelihood of GPPOM is given by

L(Θ|X, Y, β) = −DN
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whereY = [y1, . . . , yN ]T is thematrix collec ng instances of the effect, K̃ = X̃X̃T +β−1I = [X, Θ] [X, Θ]T +β−1I =
XXT+ΘΘT+β−1I is the covariance matrix a er bringing in θ, X = [x1, . . . , xN ]T is the matrix collec ng instances

of the cause, and Θ = [θ1, . . . , θN ]T is the matrix collec ng parameters associated with all instances.

Parameter es ma on by independence enforcement

We include HSIC [1] in the objec ve to enforce X and θ to be independent. By incorpora ng HSIC term into the

nega ve log-likelihood of GPPOM, the op miza on objec ve reads

arg min
Θ,Ω

J (Θ) = arg min
Θ,Ω

[−L(Θ|X, Y, Ω) + λ logHSICb(X, Θ)], (3)

where λ is the parameter which controls the importance of the HSIC term and Ω is the set of all hyper parameters

including β and all kernel parameters γd, d = 1, . . . , Dx.

Algorithms

Input: D = {(xn, yn)}N
n=1 - the set of instances of two random variables;

λ - parameter of HSIC term;

C - the number of clusters

Causal inference Mechanism clustering

Output: The causal direc on Output: The cluster labels

Standardize instances in D; Standardize instances in D;

Ini alize β and kernel parameters; Ini alize β and kernel parameters;

Op mize (3) in both direc ons; Find Θ by op mizing (3) in causal direc on;

If HSICX→Y < HSICY →X Apply k-means on θn to obtain cluster labels,

then X → Y .

Else if HSICX→Y > HSICY →X

then Y → X .

Else

No decision made.

Experiments

Causal Inference. The following elementary func ons are adopted in the synthe c experiments: (a) f1 = 1
1.5+θcX2;

(b) f2 = 2 × Xθc−0.25; (c) f3 = exp(−θcX); (d) f4 = tanh(θcX).
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Figure: Accuracy (y-axis) versus sample size (x-axis) on different causal mechanisms: (a) f1; (b) f2; (c) f3; (d) f4.

Further experiments are conducted on (a) different number of causal mechanisms (C); (b) different noise standard

devia ons (σ); (c) different mixing propor ons (ac); (d) Tübingen cause-effect pairs.
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Figure: Accuracy (y-axis) versus (a) C; (b) σ; (c) a1; on f3 with N = 100. (d) Accuracy on real Tübingen cause-effect pairs.

Mechanisms clustering. Similar se ngs are used in clustering experiments. Average adjusted Rand index (avgARI

∈ [−1, 1]), which is the mean ARI over 100 experiments, are used for evalua on.

Table: avgARI of synthe c clustering experiments (Higher the be er)

avgARI
(i) f (ii) C (iii) σ (iv) a1

f1 f2 f3 f4 3 4 0.01 0.1 0.25 0.75

ANM-MM 0.393 0.660 0.777 0.682 0.610 0.447 0.798 0.608 0.604 0.867

k-means 0.014 0.039 0.046 0.046 0.194 0.165 0.049 0.042 0.047 0.013

PCA-km 0.013 0.037 0.044 0.048 0.056 0.041 0.047 0.040 0.052 0.014

GMM 0.015 0.340 0.073 0.208 0.237 0.202 0.191 0.025 0.048 0.381

SpeClu 0.003 0.129 0.295 0.192 0.285 0.175 0.595 0.048 0.044 -0.008

DBSCAN 0.055 0.265 0.342 0.358 0.257 0.106 0.527 0.110 0.521 0.718
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