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Motivation

Regularization Measures

Background: distribution shift, which is ubiquitous in practice, is the major source of model
performance reduction when applied on previously unseen data.

Obijective (general)

Incorporate the knowledge from multiple source domains to improve the generalization
ability of classifiers on unseen target domains. [1]
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Figure: lllustration of DG on OfficetCaltech Dataset. One is given source domains: Webcam, DSLR, Caltech,
and aims to train a classifier generalizes well on target domain Amazon, which is unavailable in training.

Problem Setup
Notation Description Notation Description
XY feature/label variable T,y feature/label instance
m, n # domains/instances Z domain-invariant latent variable
P class-conditional distribution 1 kernel mean embedding of 3
U; mean representation of class j u mean representation of D

Model assumptions

A domain is defined to be a joint distribution P(X, Y').

Figure: Domain generalization
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Obijective (our method)

We aim to learn a feature transformation, h(X) : X — RY from the input space to a

g-dimensional transformed space R such that

1. source instances of the same class are close in RY;

2. source instances of different classes are distant in RY.
Postulate 1. Independence of cause and mechanism [2]

f Y causes X (Y — X), then the marginal distribution of the cause, P(Y), and the con-
ditional distribution of the effect given the cause, P(X|Y), are "independent" in the sense
that P(X|Y') contains no information about P(Y').

According to the postulate above, we factorize the joint distributions in the causal direction
P(X,Y) = B(Y)P(X|Y), (1)

and manipulate the class-conditional distributions P*(X|Y = j)fors = 1,...,mand j =
1,...,cinstead of marginal distributions in most previous works [ 3].

Within-class measures (objective 1)
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Figure: lllustration of W99 and U™ (colors - classes; markers - domains). (a) The distribution of data in the
subspace R? transformed by some WY (b) Minimizing U'%“ makes the means within each class closer. (c)
Minimizing W™= makes the distribution of each class more compact towards its mean representation.

Between-class measures (objective 2)

Average class discrepancy pocd = (—1) 2 icjcj<e Ity — wprl|%
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Figure: lllustration of W9 and ¥™?s ( colors - classes; markers - domains). (a) The distribution of data in the
subspace R? transformed by some W', (b) Maximizing W9 makes the distances between each pair of mean
representations larger. (c) Maximizing U makes the average distance between the overall mean and the
mean representation of different classes larger.

Multidomain Discriminant Analysis

Learning Theory Analysis

Theorem 3. Under assumptions 2 - 4, and assuming that all source sample sets are of the
samesize,i.e.n® =nfors=1,..., m, thenwith probability at least 1 — § there is
sup

1M1 .
— ) 2 LW,y ) = E(F,
| £l <1 m;nsg ( ( )y) (f,00)

—1 —1 —1
<U, <\/1O§ii + loii ) +\/tr(BTKB) (cl\/logzz LS (‘/winf \/E)) . (3)

The first term is of order O(m~"?) and converges to zero as m — oo. The second term
involves the size of the distortion tr(BY KB) introduced by B. Therefore, a poor choice of
B would loose the guarantee.

Experiments

The optimization problem

We unify regularization measures and solve the following optimization problem:
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arg max

We term the proposed method Multidomain Discriminant Analysis (MDA) and summarize
the algorithm below

Input: D = {D*}", - the set of instances from m domains;
«, 3,y - trade-off parameters;

Feature transformation learning
Output: Optimal projection B, «g;
corresponding eigenvaluesT.

Target feature transformation
Output: the transformed target features X'

e Construct kernel matrix K, whose entry on
ith row and ¢'th column K|, = k(x;, xy);

e Compute matrices corresponding to regu-
larization measures;

e CenterthekernelmatrixasK «+ K—1,K—
K1,+1,K1,, wherel, € R""denotesama-
trix with all entries equal to +;

e Solve for the projection B and correspond-
ing eigenvalues I, then select ¢ leading com-
ponents.

e Denote the set of instances from the target
domain by D?, one first constructs the kernel
matrix K, where [K'|;; = k(x}, x;), V!, € D',
Vx; € D;

o Center the kernel matrix as K! «+ K' —
1, K'— K1, +1,.K'1,, where n' is the num-
ber of instances in D*;

e Thenthetransformedfeaturesof thetarget
domain are given by X! = K'BT' 2.

Synthetic data. Data: two-dimensional Gaussian. Domains: two source domains and one
target domain. Classes: three classes in each domain.
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Figure: Class Prior Distributions P(Y) in Synthetic Experiments.

Table: Accuracy (%) of Synthetic Experiments (bold red and bold indicate the best and second best).

P(Yy) (@ (b (© (& (€ @ (@ (@ (@
Pry) (@ (@ (@ (@ @ ® (© «d (e

SVM  56.00 34.00 33.33 33.33 33.33 33.33 40.00 36.00 60.00
KPCA 66.00 62.00 66.6/7 33.33 33.33 65.33 36.00 40.00 14.00
KED  /8.67 38.67 46.00 74.67 47.533 49.33 34.00 19.33 76.00
-SVM 56.00 60.00 64.00 62.00 60.67 64.6/7 45.33 46.00 59.33
DICA 93.33 84.67 76.00 84.00 84.6/ 5400 95.33 /71.33 88.67
SCA /7933 72.00 84.67 5/.33 76.00 59.33 84.6/ 61.33 81.33
CIDG 90.67 87.33 74.6/ 77.33 86.67 83.33 92.00 82.00 36.00
MDA 96.67 96.00 97.33 94.00 94.00 921.33 95.33 94.00 94.00

VLCS Dateset. Data: DeCAF features of 4096 dimensions. Domains: V(VOC2007), L(La-
belMe), C(Caltech), and S(SUNQO9). Classes: five classes (bird, car, chair, dog, and person).

Table: Accuracy (%) of VLCS Dataset

Target V L C S v,L V,C Vs L C LS (CS

INN  60.19 53.57 89.94 55.74 5/.26 58.54 50.59 66.06 58.13 66.25
SVM  68.57 59.26 93.99 65.27 61.80 64.39 55.89 /0.08 64.10 71.09
KPCA 60.69 54.86 83.89 55.61 5/.54 5/.50 49.46 6/.48 56.05 66.15
KFD  61.64 60.54 86.7/8 58.75 5/.33 46.84 53.20 70.03 61.64 6/.87
-SVM 58.14 39.87 /75.56 52.92 5225 56.64 48.27 61.24 56.65 66.27
CCSA 60.539 58.80 86.88 59.8/ 59.27 5502 51.56 69.94 61.41 63.49
DICA 62.71 59.38 86.15 5/7.28 58.11 55.08 55.1/ /0.01 61.44 /0.30
SCA 6213 58.24 838.48 60.66 60.66 5/.59 54.66 71.90 61.57 /0.71
CIDG 64.16 5/7.91 90.11 59.48 60.54 54.56 55.7/7 /0.74 62.48 69.83
MDA 66.86 61.78 92.64 59.58 59.60 63.72 55.98 72.88 62.83 /2.00
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