Domain Generalization via Multidomain Discriminant Analysis

Kun Zhang

Zhitang Chen
Laiwan Chan
The Chinese University of Hong Kong
Carnegie Mellon University
Huawei Noah's Ark Lab

Background: distribution shift, which is ubiquitous in practice, is the major source of model performance reduction when applied on previously unseen data.

Objective (general)

Incorporate the knowledge from multiple source domains to improve the generalization ability of classifiers on unseen target domains. [1]

Figure: Illustration of DG on Office+Caltech Dataset. One is siven source domains: Webcam, DSLR, Caltech,
and aims to train a classifier generalizes well on target domain Amazon, which is unavailable in training. and aims to train a classifier generalizes well on target domain Amazon, which is unavailable in training.

Problem Setup					
Notation					Description
Notation	Description	Notrinel			
X, Y	feature/label variable	\boldsymbol{x}, y	feature/label instance		
m, n	\#domains/instances	Z	domain-invariant latent variable		
\mathbb{P}_{j}^{s}	class-conditional distribution	μ_{j}^{s}	kernel mean embedding of \mathbb{P}_{j}^{s}		
u_{j}	mean representation of class j	\bar{u}	mean representation of \mathcal{D}		

Model assumptions

A domain is defined to be a joint distribution $\mathbb{P}(X, Y)$.

Figure: Domain generalization
model assumption. m domains model assumption. m domains
are uniformly sampled from a set of domains and are called the source domains. A model trained on m source domains is
expected to generalize well on expected to generalize well on
an unseen domain $\mathbb{P}^{t}(X, Y)$, which is called the target domain.

Objective (our method)

We aim to learn a feature transformation, $h(X): \mathcal{X} \mapsto \mathbb{R}^{q}$, from the input space to a q-dimensional transformed space \mathbb{R}^{q} such that

1. source instances of the same class are close in \mathbb{R}^{q};
2. source instances of different classes are distant in \mathbb{R}^{q}.

Postulate 1. Independence of cause and mechanism [2]
If Y causes $X(Y \rightarrow X)$, then the marginal distribution of the cause, $\mathbb{P}(Y)$, and the con ditional distribution of the effect given the cause, $\mathbb{P}(X \mid Y)$, are "independent" in the sense that $\mathbb{P}(X \mid Y)$ contains no information about $\mathbb{P}(Y)$.
According to the postulate above, we factorize the joint distributions in the causal direction

$$
\begin{equation*}
\mathbb{P}(X, Y)=\mathbb{P}(Y) \mathbb{P}(X \mid Y), \tag{1}
\end{equation*}
$$

and manipulate the class-conditional distributions $\mathbb{P}^{s}(X \mid Y=j)$ for $s=1, \ldots, m$ and $j=$ and manipulate the class-conditional distributions $\mathbb{P}^{s}(X \mid Y=j)$ for $s=1, \ldots, m$ and $j=$
$1, \ldots, c$ instead of marginal distributions in most previous works $[3]$.

Regularization Measures

Within-class measures (objective 1)

$$
\begin{aligned}
& \text { Average Domain Discrepancy } \quad \Psi^{\text {add }}:=\frac{1}{c m_{(m)}^{m}} \sum_{j=1}^{c} \sum_{1 \leq s \leq s^{\prime} \leq m}\left\|\mu_{j}^{s}-\mu_{j}^{s^{s}}\right\|_{\mathcal{H}}^{2} \\
& \text { Muldidomain within-class scatter } \Psi^{m w s}:=\frac{1}{n} \sum_{j=1}^{c} \sum_{s=1}^{m} \sum_{i=1}^{n}\left\|\phi\left(\boldsymbol{x}_{i \in j}^{s}\right)-u_{j}\right\|_{\mathcal{H}}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) }
\end{aligned}
$$

Figure: Illustration of $\Psi^{\text {add }}$ and $\Psi^{\text {mws }}$ (colors - classes; markers - domains). (a) The distribution of data in the subssace \mathbb{R}^{y} transformed by some \mathbf{W}^{0}. (b) Minimizing $\Psi^{\text {odd }}$ dakes the means within each class closer. (c)
Minimizing $\Psi^{\text {mus }}$ makes the distribution of each class more compact towards its mean representation.

Between-class measures (objective 2)

$$
\begin{array}{ll}
\text { Average class discrepancy } & \Psi^{a c d}:=\frac{1}{(c)} \sum_{1 \leq j<j^{\prime} \leq c}\left\|u_{j}-u_{j^{j}}\right\|_{\mathcal{H}}^{2} \\
\text { Multidomain between-class scatter } \Psi^{m b s}:=\frac{1}{n} \sum_{j=1}^{c} n_{j}\left\|u_{j}-\bar{u}\right\|_{\mathcal{H}}^{2}
\end{array}
$$

$$
\begin{aligned}
& \text { (a) } \\
& \text { (a) }
\end{aligned}
$$

(b)

Learning Theory Analysis

Theorem 3. Under assumptions 2-4, and assuming that all source sample sets are of the same size, i.e. $n^{s}=\bar{n}$ for $s=1, \ldots, m$, then with probability at least $1-\delta$ there is

$$
\begin{align*}
& \sup _{\|f\|_{k} \leq 1}\left|\frac{1}{m} \sum_{s=1}^{m} \frac{1}{n^{s}} \sum_{i=1}^{n^{s}} \ell\left(f\left(\hat{X}_{i}^{s} \mathbf{W}\right), y_{i}^{s}\right)-\mathcal{E}(f, \infty)\right| \\
& \leq U_{\ell}\left(\sqrt{\frac{\log 2 \delta^{-1}}{2 m \bar{n}}}+\sqrt{\frac{\log \delta^{-1}}{2 m}}\right)+\sqrt{\operatorname{tr}\left(\mathbf{B}^{T} \mathbf{K B}\right)}\left(c_{1} \sqrt{\frac{\log 2 \delta^{-1} m}{\bar{n}}}+c_{2}\left(\sqrt{\frac{1}{m \bar{n}}}+\sqrt{\frac{1}{m}}\right)\right) . \tag{3}
\end{align*}
$$

The first term is of order $O\left(m^{-1 / 2}\right)$ and converges to zero as $m \rightarrow \infty$. The second term involves the size of the distortion $\operatorname{tr}\left(\mathbf{B}^{T} \mathbf{K B}\right)$ introduced by \mathbf{B}. Therefore, a poor choice of B would loose the guarantee.

Experiments

Synthetic data. Data: two-dimensional Gaussian. Domains: two source domains and one target domain. Classes: three classes in each domain.

Table: Accuracy (\%) of Synthetic Experiments (bold red and bold indicate the best and second best).

$\mathbb{P}^{1}(Y)$	(a)	(b)	(c)	(d)	(e)	(a)	(a)	(a)	(a)

$\mathbb{P}^{2}(Y)$	(a)	(a)	(a)	(a)	(a)	(b)	(c)	(d)	(e)
(

 KPCA 66.0062 .0066 .6733 .3333 .3365 .3336 .0040 .0014 .00 KFD $\quad 78.6738 .6746 .0074 .6747 .3349 .3334 .0019 .3376 .00$ L-SVM 56.0060 .0064 .0062 .0060 .6764 .6745 .3346 .0059 .33 DICA 93.3384 .6776 .0084 .0084 .6754 .0095 .3371 .3388 .67

MDA	96.67	96.00	97.33	94.00	94.00	91.33	95.33	94.00	94.00

VLCS Dateset. Data: DeCAF ${ }_{6}$ features of 4096 dimensions. Domains: V(VOC2007), L(LabelMe), C(Caltech), and S(SUNO9). Classes: five classes (bird, car, chair, dog, and person).

> | Table: Accuracy (\%) of VLCS Dataset | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Target | V | L | C | S | V, L | V, C | V, S | L, C | L, S | C, S |
| 1NN | 60.19 | 53.57 | 89.94 | 55.74 | 57.26 | 58.54 | 50.59 | 66.06 | 58.13 | 66.25 |
| SVM | 68.57 | 59.26 | 93.99 | 65.27 | 61.80 | 64.39 | 55.89 | 70.08 | 64.10 | 71.09 |
| KPCA | 60.69 | 54.86 | 83.89 | 55.61 | 57.54 | 57.50 | 49.46 | 67.48 | 56.05 | 66.15 |
| KFD | 61.64 | 60.54 | 86.78 | 58.75 | 57.33 | 46.84 | 53.20 | 70.03 | 61.64 | 67.87 |
| L-SVM | 58.14 | 39.87 | 75.56 | 52.92 | 52.25 | 56.64 | 48.27 | 61.24 | 56.65 | 66.27 |
| CCSA | 60.39 | 58.80 | 86.88 | 59.87 | 59.27 | 55.02 | 51.56 | 69.94 | 61.41 | 68.49 |
| DICA | 62.71 | 59.38 | 86.15 | 57.28 | 58.11 | 55.08 | 55.17 | 70.01 | 61.44 | 70.30 |
| SCA | 6.13 | 58.24 | 88.48 | 60.66 | 0.66 | 57.59 | 54.66 | 71.90 | 1.57 | 70.71 |
| CIDG | 64.16 | 57.91 | 90.11 | 59.48 | 60.54 | 54.56 | 55.77 | 70.74 | 62.48 | 69.83 |
| MDA | 66.86 | 61.78 | 92.64 | 59.58 | 59.60 | 63.72 | 55.98 | 72.88 | 62.83 | 72.00 |

References

[^0]
[^0]: 1] Gilles Blanchard, Gyemin Lee and Clayton Scott. Generalizing from several related Classifica
 -sample. In Advances in ineural I hformation P Pocecessing Systems S NilPS), pages $21188-2188$, 2011.
 2] Dominik Janzing and Berrhard Scholkopf. Caussal inference using the algorithmic markov condition. IEEE Transoctions on
 Information Theor, 56(10):5168-5194, 2010.
 Proceedings of the Soth Interational Conference on Machine Learning (ICML 2013), pages 10-18, 201

