

Motivation

Background: distribution shift, which is ubiquitous in practice, is the major source of model performance reduction when applied on previously unseen data.

Objective (general)

Incorporate the knowledge from multiple source domains to improve the generalization ability of classifiers on unseen target domains. [1]

Figure: Illustration of DG on Office+Caltech Dataset. One is given source domains: Webcam, DSLR, Caltech, and aims to train a classifier generalizes well on target domain Amazon, which is unavailable in training.

Problem Setup

X,Y feature/label variable x,y feature/label variable m,n # domains/instances Z domain-invaria \mathbb{P}_j^s class-conditional distribution μ_j^s kernel mean				
m,n # domains/instances Z domain-invariances \mathbb{P}^s_j class-conditional distribution μ^s_j kernel mean	Notation	Description	Notation	Descrip
a_1 moon concontation of class a_1 moon conc	${\mathbb{P}^{s}_{j}}$	# domains/instances class-conditional distribution	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	feature/label domain-invariant l kernel mean emb
u_j mean representation of class j $ar{u}$ mean repre	u_j	$\frac{1}{3}$	\mathcal{U}	mean represen

Model assumptions

A domain is defined to be a joint distribution $\mathbb{P}(X, Y)$.

Figure: Domain generalization model assumption. m domains are uniformly sampled from a set of domains and are called the source domains. A model trained on *m* source domains is expected to generalize well on an unseen domain $\mathbb{P}^t(X, Y)$, which is called the **target** domain.

Objective (our method)

We aim to learn a feature transformation, $h(X) : \mathcal{X} \mapsto \mathbb{R}^q$, from the input space to a q-dimensional transformed space \mathbb{R}^q such that

1. source instances of the same class are close in \mathbb{R}^q ;

2. source instances of different classes are distant in \mathbb{R}^q .

Postulate 1. Independence of cause and mechanism [2] If Y causes $X (Y \to X)$, then the marginal distribution of the cause, $\mathbb{P}(Y)$, and the conditional distribution of the effect given the cause, $\mathbb{P}(X|Y)$, are "independent" in the sense that $\mathbb{P}(X|Y)$ contains no information about $\mathbb{P}(Y)$.

According to the postulate above, we factorize the joint distributions in the causal direction (1)

 $\mathbb{P}(X,Y) = \mathbb{P}(Y)\mathbb{P}(X|Y),$

and manipulate the class-conditional distributions $\mathbb{P}^{s}(X|Y = j)$ for $s = 1, \ldots, m$ and j = j $1, \ldots, c$ instead of marginal distributions in most previous works [3].

Domain Generalization via Multidomain Discriminant Analysis

Shoubo Hu¹ Kun Zhang² Zhitang Chen³

¹ The Chinese University of Hong Kong

² Carnegie Mellon University

Regularization Measures

Within-class measures (objective 1)

Figure: Illustration of Ψ^{add} and Ψ^{mws} (colors - classes; markers - domains). (a) The distribution of data in the subspace \mathbb{R}^q transformed by some \mathbf{W}^0 . (b) Minimizing Ψ^{add} makes the means within each class closer. (c) Minimizing Ψ^{mws} makes the distribution of each class more compact towards its mean representation.

Between-class measures (objective 2)

Average class discrepancy

Figure: Illustration of Ψ^{acd} and Ψ^{mbs} (colors - classes; markers - domains). (a) The distribution of data in the subspace \mathbb{R}^q transformed by some \mathbf{W}^0 . (b) Maximizing Ψ^{acd} makes the distances between each pair of mean representations larger. (c) Maximizing Ψ^{mbs} makes the average distance between the overall mean and the mean representation of different classes larger.

Multidomain Discriminant Analysis

The optimization problem

We unify regularization measures and solve the following optimization problem:

 $\operatorname{arg\,max} \frac{\Psi^{add} + \Psi^{mws}}{\Psi^{add} + \Psi^{mws}}.$

We term the proposed method Multidomain Discriminant Analysis (MDA) and summarize the algorithm below

Input: $\mathcal{D} = {\mathcal{D}^s}_{s=1}^m$ - the set of instances from *m* domains; α, β, γ - trade-off parameters;

Feature transformation learning Output: Optimal projection $\mathbf{B}_{n \times q}$; corresponding eigenvalues Γ .	Target Outpu
 Construct kernel matrix K, whose entry on <i>i</i>th row and <i>i</i>'th column [K]_{<i>ii</i>'} = k(x_i, x_{i'}); Compute matrices corresponding to regularization measures; Center the kernel matrix as K ← K−1_nK−K1_n+1_nK1_n, where 1_n ∈ ℝ^{n×n} denotes a matrix with all entries equal to 1/n; Solve for the projection B and corresponding eigenvalues Γ, then select q leading components. 	• Dend domain matrix $\forall x_i \in T$ • Cent $1_{n^t}\mathbf{K}^t$ - ber of i • Then domain

otion

linstance latent variable bedding of \mathbb{P}_{i}^{s} ntation of ${\cal D}$

Laiwan Chan¹

³ Huawei Noah's Ark Lab

JIIIOS	
2	(\cap)
mws	

feature transformation **ut**: the transformed target features \mathbf{X}^t

- note the set of instances from the target in by \mathcal{D}^t , one first constructs the kernel $\langle \mathbf{K}^t, \mathsf{where} \left[\mathbf{K}^t
 ight]_{i'i} = k(oldsymbol{x}_{i'}^t, oldsymbol{x}_i), orall oldsymbol{x}_{i'}^t \in \mathcal{D}^t,$
- nter the kernel matrix as $\mathbf{K}^t \leftarrow \mathbf{K}^t \mathbf{K}^t$ $-\mathbf{K}^t \mathbf{1}_n + \mathbf{1}_{n^t} \mathbf{K}^t \mathbf{1}_n$, where n^t is the numf instances in \mathcal{D}^t ;
- in the transformed features of the target in are given by $\mathbf{X}^t = \mathbf{K}^t \mathbf{B} \mathbf{\Gamma}^{-\frac{1}{2}}$.

$$\sup_{\|f\|_{\mathcal{H}_{\bar{k}}} \leq 1} \left| \frac{1}{m} \sum_{s=1}^{m} \frac{1}{n^{s}} \sum_{i=1}^{n^{s}} \ell\left(f(\hat{X}_{i}^{s} \mathbf{W}), y_{i}^{s} \right) - \mathcal{E}(f, \infty) \right|$$

$$\leq U_{\ell} \left(\sqrt{\frac{\log 2\delta^{-1}}{2m\bar{n}}} + \sqrt{\frac{\log \delta^{-1}}{2m}} \right) + \sqrt{\operatorname{tr}(\mathbf{B}^{T} \mathbf{K} \mathbf{B})} \left(c_{1} \sqrt{\frac{\log 2\delta^{-1}m}{\bar{n}}} + c_{2} \left(\sqrt{\frac{1}{m\bar{n}}} + \sqrt{\frac{1}{m}} \right) \right). \tag{3}$$

 \mathbf{B} would loose the guarantee.

target domain. Classes: three classes in each domain.

Figure: Class Prior Distributions $\mathbb{P}(Y)$ in Synthetic Experiments.

${\mathbb P}^1(Y) \ {\mathbb P}^2(Y)$	(a) (a)	(b) (a)	(c) (a)	(d) (a)	(e) (a)	(a) (b)	(a) (c)		(a) (e)
SVM	56.00	34.00	33.33	33.33	33.33	33.33	40.00	36.00	60.00
КРСА	66.00	62.00	66.67	33.33	33.33	65.33	36.00	40.00	14.00
KFD	78.67	38.67	46.00	74.67	47.33	49.33	34.00	19.33	76.00
L-SVM	56.00	60.00	64.00	62.00	60.67	64.67	45.33	46.00	59.33
DICA	93.33	84.67	76.00	84.00	84.67	54.00	95.33	71.33	88.67
SCA	79.33	72.00	84.67	57.33	76.00	59.33	84.67	61.33	81.33
CIDG	90.67	87.33	74.67	77.33	86.67	83.33	92.00	82.00	86.00
MDA	96.67	96.00	97.33	94.00	94.00	91.33	95.33	94.00	94.00

Table. Accuracy (70) OF VLC3 Dataset										
Target	\lor	L	С	S	V, L	V, C	V, S	L, C	L, S	C, S
1NN	60.19	53.57	89.94	55.74	57.26	58.54	50.59	66.06	58.13	66.25
SVM	68.57	59.26	93.99	65.27	61.80	64.39	55.89	70.08	64.10	71.09
КРСА	60.69	54.86	83.89	55.61	57.54	57.50	49.46	67.48	56.05	66.15
KFD	61.64	60.54	86.78	58.75	57.33	46.84	53.20	70.03	61.64	67.87
L-SVM	58.14	39.87	75.56	52.92	52.25	56.64	48.27	61.24	56.65	66.27
CCSA	60.39	58.80	86.88	59.87	59.27	55.02	51.56	69.94	61.41	68.49
DICA	62.71	59.38	86.15	57.28	58.11	55.08	55.17	70.01	61.44	70.30
SCA	62.13	58.24	88.48	60.66	60.66	57.59	54.66	71.90	61.57	70.71
CIDG	64.16	57.91	90.11	59.48	60.54	54.56	55.77	70.74	62.48	69.83
MDA	66.86	61.78	92.64	59.58	59.60	63.72	55.98	72.88	62.83	72.00

[1] Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several related classification tasks to a new unlabeled sample. In Advances in Neural Information Processing Systems (NIPS), pages 2178--2186, 2011.

Information Theory, 56(10):5168--5194, 2010.

Learning Theory Analysis

Theorem 3. Under assumptions 2 - 4, and assuming that all source sample sets are of the same size, i.e. $n^s = \bar{n}$ for $s = 1, \ldots, m$, then with probability at least $1 - \delta$ there is

The first term is of order $O(m^{-1/2})$ and converges to zero as $m \to \infty$. The second term involves the size of the distortion $tr(\mathbf{B}^T\mathbf{K}\mathbf{B})$ introduced by **B**. Therefore, a poor choice of

Experiments

Synthetic data. Data: two-dimensional Gaussian. Domains: two source domains and one

Table: Accuracy (%) of Synthetic Experiments (**bold red** and **bold** indicate the best and second best).

VLCS Dateset. Data: DeCAF₆ features of 4096 dimensions. Domains: V(VOC2007), L(LabelMe), C(Caltech), and S(SUN09). Classes: five classes (bird, car, chair, dog, and person).

Table: Accuracy (%) of VLCS Dataset

References

- [2] Dominik Janzing and Bernhard Scholkopf. Causal inference using the algorithmic markov condition. IEEE Transactions on
- [3] Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via invariant feature representation. In Proceedings of the 30th International Conference on Machine Learning (ICML 2013), pages 10--18, 2013.