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Motivation

Background: distribution shift, which is ubiquitous in practice, is themajor source of model

performance reduction when applied on previously unseen data.

Objecধve (general)

Incorporate the knowledge from multiple source domains to improve the generalization

ability of classifiers on unseen target domains. [1]
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Figure: Illustration of DG onOffice+Caltech Dataset. One is given source domains: Webcam, DSLR, Caltech,

and aims to train a classifier generalizes well on target domain Amazon, which is unavailable in training.

Problem Setup

Notation Description Notation Description

X , Y feature/label variable x, y feature/label instance

m, n # domains/instances Z domain-invariant latent variable

Ps
j class-conditional distribution µs

j kernel mean embedding of Ps
j

uj mean representation of class j ū mean representation ofD

Model assumpধons

A domain is defined to be a joint distribution P(X, Y ).
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Figure: Domain generalization

model assumption. m domains

are uniformly sampled from a

set of domains and are called the

source domains. A model

trained onm source domains is

expected to generalize well on

an unseen domain Pt(X, Y ),
which is called the target

domain.

Objecধve (our method)

We aim to learn a feature transformation, h(X) : X 7→ Rq, from the input space to a

q-dimensional transformed spaceRq such that

1. source instances of the same class are close inRq;

2. source instances of different classes are distant inRq.

Postulate 1. Independence of cause andmechanism [2]

If Y causes X (Y → X), then the marginal distribution of the cause, P(Y ), and the con-

ditional distribution of the effect given the cause, P(X|Y ), are ''independent'' in the sense
that P(X|Y ) contains no information about P(Y ).
According to the postulate above, we factorize the joint distributions in the causal direction

P(X, Y ) = P(Y )P(X|Y ), (1)

and manipulate the class-conditional distributions Ps(X|Y = j) for s = 1, . . . , m and j =
1, . . . , c instead of marginal distributions in most previous works [3].

Regularization Measures

Within-class measures (objecধve 1)

Average Domain Discrepancy Ψadd := 1
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Figure: Illustration ofΨadd andΨmws (colors - classes; markers - domains). (a) The distribution of data in the

subspaceRq transformed by someW0. (b) MinimizingΨaddmakes themeans within each class closer. (c)

MinimizingΨmwsmakes the distribution of each class more compact towards its mean representation.

Between-class measures (objecধve 2)

Average class discrepancy Ψacd := 1
(c
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Figure: Illustration ofΨacd andΨmbs ( colors - classes; markers - domains). (a) The distribution of data in the

subspaceRq transformed by someW0. (b) MaximizingΨacdmakes the distances between each pair of mean

representations larger. (c) MaximizingΨmbsmakes the average distance between the overall mean and the

mean representation of different classes larger.

Multidomain Discriminant Analysis

The opধmizaধon problem

Weunify regularization measures and solve the following optimization problem:

arg max Ψacd + Ψmbs

Ψadd + Ψmws
. (2)

We term the proposed method Multidomain Discriminant Analysis (MDA) and summarize

the algorithm below

Input: D = {Ds}m
s=1 - the set of instances fromm domains;

α, β, γ - trade-off parameters;

Feature transformation learning Target feature transformation

Output: Optimal projectionBn×q; Output: the transformed target featuresXt

corresponding eigenvaluesΓ.

• Construct kernel matrix K, whose entry on

ith row and i′th column [K]ii′ = k(xi, xi′);
• Compute matrices corresponding to regu-

larization measures;

• Center thekernelmatrixasK← K−1nK−
K1n +1nK1n, where1n ∈ Rn×ndenotesama-

trix with all entries equal to 1
n;

• Solve for the projection B and correspond-

ing eigenvalues Γ, then select q leading com-

ponents.

• Denote the set of instances from the target

domain by Dt, one first constructs the kernel

matrixKt, where [Kt]i′i = k(xt
i′, xi), ∀xt

i′ ∈ Dt,

∀xi ∈ D;
• Center the kernel matrix as Kt ← Kt −
1ntKt−Kt1n + 1ntKt1n, where nt is the num-

ber of instances inDt;

• Then the transformed featuresof the target

domain are given byXt = KtBΓ−1
2 .

Learning Theory Analysis

Theorem 3. Under assumptions 2 - 4, and assuming that all source sample sets are of the
same size, i.e. ns = n̄ for s = 1, . . . , m, then with probability at least 1− δ there is
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The first term is of order O(m−1/2) and converges to zero as m → ∞. The second term

involves the size of the distortion tr(BTKB) introduced by B. Therefore, a poor choice of

Bwould loose the guarantee.

Experiments

Synthetic data. Data: two-dimensional Gaussian. Domains: two source domains and one

target domain. Classes: three classes in each domain.
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Figure: Class Prior Distributions P(Y ) in Synthetic Experiments.

Table: Accuracy (%) of Synthetic Experiments (bold red and bold indicate the best and second best).

P1(Y ) (a) (b) (c) (d) (e) (a) (a) (a) (a)

P2(Y ) (a) (a) (a) (a) (a) (b) (c) (d) (e)

SVM 56.00 34.00 33.33 33.33 33.33 33.33 40.00 36.00 60.00

KPCA 66.00 62.00 66.67 33.33 33.33 65.33 36.00 40.00 14.00

KFD 78.67 38.67 46.00 74.67 47.33 49.33 34.00 19.33 76.00

L-SVM 56.00 60.00 64.00 62.00 60.67 64.67 45.33 46.00 59.33

DICA 93.33 84.67 76.00 84.00 84.67 54.00 95.33 71.33 88.67

SCA 79.33 72.00 84.67 57.33 76.00 59.33 84.67 61.33 81.33

CIDG 90.67 87.33 74.67 77.33 86.67 83.33 92.00 82.00 86.00

MDA 96.67 96.00 97.33 94.00 94.00 91.33 95.33 94.00 94.00

VLCS Dateset. Data: DeCAF6 features of 4096 dimensions. Domains: V(VOC2007), L(La-

belMe), C(Caltech), and S(SUN09). Classes: five classes (bird, car, chair, dog, and person).

Table: Accuracy (%) of VLCSDataset

Target V L C S V, L V, C V, S L, C L, S C, S

1NN 60.19 53.57 89.94 55.74 57.26 58.54 50.59 66.06 58.13 66.25

SVM 68.57 59.26 93.99 65.27 61.80 64.39 55.89 70.08 64.10 71.09

KPCA 60.69 54.86 83.89 55.61 57.54 57.50 49.46 67.48 56.05 66.15

KFD 61.64 60.54 86.78 58.75 57.33 46.84 53.20 70.03 61.64 67.87

L-SVM 58.14 39.87 75.56 52.92 52.25 56.64 48.27 61.24 56.65 66.27

CCSA 60.39 58.80 86.88 59.87 59.27 55.02 51.56 69.94 61.41 68.49

DICA 62.71 59.38 86.15 57.28 58.11 55.08 55.17 70.01 61.44 70.30

SCA 62.13 58.24 88.48 60.66 60.66 57.59 54.66 71.90 61.57 70.71

CIDG 64.16 57.91 90.11 59.48 60.54 54.56 55.77 70.74 62.48 69.83

MDA 66.86 61.78 92.64 59.58 59.60 63.72 55.98 72.88 62.83 72.00
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